FAR BEYOND

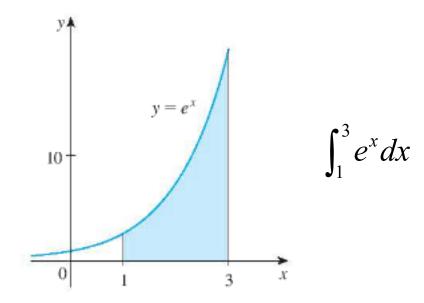
MAT122

Definite Integral

Definite Integration Notation

Definite Integral $\int_{a}^{b} f(x) dx$

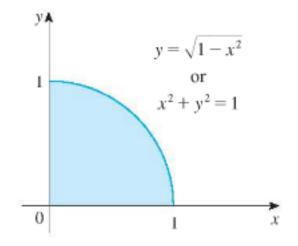
x = a and x = b are the bounds of the integration



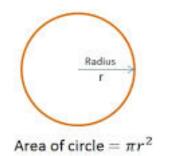
Evaluating Integrals using Area of Circle

ex. Evaluate the following integral by interpreting in terms of area.

$$\int_0^1 \sqrt{1-x^2} \, dx$$



Area of a Circle:



$$=\boxed{rac{\pi}{4}}$$

Indefinite vs. Definite Integral

Recall:
$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + C$$

The indefinite integral has no bounds.

There is a family of solutions.

ex.
$$\int 4x^3 dx =$$

The *definite* integral has bounds from x = a to x = b. There is a single solution.

If f is continuous on $a \le x \le b$ and F'(x) = f(x) then $\int_a^b f(x) \, dx = F(b) - F(a).$

ex.
$$\int_{1}^{3} 4x^{3} dx =$$

$$= 80$$

Definite Integral w/Polynomial

ex. Evaluate
$$\int_{0}^{1} \left(1 + \frac{1}{2}u^{4} + \frac{2}{5}u^{9} \right) du$$

$$= \left(u + \frac{1}{2} \cdot \frac{u^{5}}{5} + \frac{2}{5} \cdot \frac{u^{10}}{10} \right) \Big|_{0}^{1}$$

$$= \left(u + \frac{u^{5}}{10} + \frac{u^{10}}{25} \right) \Big|_{0}^{1} = F(b) - F(a)$$

$$= F(1) - F(0)$$

$$\int_{m}^{n} ax^{n} dx = \left. \frac{ax^{n+1}}{n+1} \right|_{m}^{n}$$

$$= \frac{57}{50}$$

Definite Integral w/Radical

ex. Evaluate
$$\int_{1}^{18} \sqrt{\frac{3}{z}} dz$$

$$\int_{m}^{n} ax^{n} dx = \left. \frac{ax^{n+1}}{n+1} \right|_{m}^{n}$$

$$= 2\sqrt{3} \begin{pmatrix} 3\sqrt{2} & -1 \end{pmatrix}$$

Definite Integral with Exponential

ex. Evaluate
$$\int_0^1 e^x dx$$

$$=$$
 $\begin{bmatrix} e & -1 \end{bmatrix}$

$$(e^x)' = e^x$$

$$\left| \left(e^x \right)' = e^x \right| \int_m^n e^x dx = \left| e^x \right|_m^n$$

ex. Find
$$\frac{d}{dx} \left(\frac{e^{3x}}{3} \right)$$

$$=$$
 e^{3x}

ex. Evaluate
$$\int e^{3x} dx$$

$$\int e^{u} dx = \frac{e^{u}}{u'} + C$$

$$\int e^{\mathbf{u}} dx = \frac{e^{\mathbf{u}}}{\mathbf{u}'} + C \qquad \int_{m}^{n} e^{\mathbf{u}} dx = \frac{e^{\mathbf{u}}}{\mathbf{u}'} \Big|_{m}^{n}$$